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Abstract—Recently, the development of speed 
estimation methods for sensorless control of 
induction motor drives has found great interest in 
the research community. Parameter adaptation
schemes play an important role for better speed 
estimation over a wide range from zero to high levels 
beyond the rated speed. Therefore, parallel 
identification schemes for both speed and stator 
resistance of sensorless induction motor drives are 
proposed for a wide range of speed estimation. These 
estimation algorithms combine a sliding-mode 
current observer with Popov’s hyper stability 
theory. Low- and zero-speed operations of the 
proposed sliding mode- observer (SMO)-based speed 
estimation combined with an online stator resistance 
adaptation scheme are investigated.

Fuzzy logic controllers (FLC’s) have the following 
advantages over the conventional controllers: they 
are cheaper to develop, they cover a wider range of 
operating conditions, and they are more readily 
customizable in natural language terms. 

I. INTRODUCTION
Several methods have been recently proposed for speed 
estimation of sensorless induction motor drives [1], [2]. 
They can be classified into two major categories. The 
first one includes the techniques that estimate the rotor 
speed based on non ideal phenomena such as rotor slot 
harmonics and high frequency signal injection methods 
[3]. Such methods require spectrum analysis which, 
besides being time-consuming procedures, allow a 
narrow band of speed control. The second category of 
speed estimation methods relies on the model of the 
induction motor. The supremacy of a certain method 
depends on its estimation accuracy over a wide speed 
range. Model based methods of speed estimation are 
characterized by their simplicity, but sensitivity to 
parameter variations is considered the major problem 
associated with them. Stator resistance plays an 
important role, and its value has to be known with good 
precision in order to obtain accurate speed estimation in 
the low-speed region [4]. The interest in stator resistance 
adaptation came on the scene much recently, with the 

advances of speed sensorless systems. It has also 
received more attention with the introduction of the 
direct torque control technique. An accurate value of the 
stator resistance is of crucial importance for the correct 
operation of a sensorless drive in the low-speed region, 
since any mismatch between the actual value and the set 
value used within the model of speed estimation may 
lead not only to a substantial speed estimation error but 
also to instability [5]–[7]. Therefore, there is a great 
interest in the research community to develop stator 
resistance identification schemes for accurate low-speed 
estimation. An offline estimation procedure of the motor 
parameters at various operating conditions is introduced 
in [7].  In that work, the stator resistance is observed to 
be varying as a function of stator temperature. The rotor 
resistance is also estimated offline for rotor field 
orientation as a function of slip frequency and rotor 
temperature. Numerous online estimation techniques are 
also proposed for continuously updating parameter 
values. An online rotor resistance estimation for rotor 
field orientation using a sliding mode observer (SMO) 
and a model reference adaptive system (MRAS) is 
proposed in [8]–[10]. The online stator resistance 
identification schemes can be classified into a couple of 
distinct categories. These schemes rely on stator current 
measurement and mostly require information regarding 
stator voltages [11]– [15]. The first category includes 
different types of estimators which often use an adaptive 
mechanism to update the value of stator resistance [11]–
[14]. The stator resistance is determined in [11] by using 
a reactive-power-based MRAS. The reactive power 
relies on the accuracy of other parameters, such as 
leakage inductance and rotor resistance, which are not 
necessarily constant, and the result is prone to error. 
Adaptive full-order flux observers (AFFOs) for 
estimating the speed and stator resistance are developed 
using Lyapunov’s stability criterion [12], [13]. While 
these schemes are not computationally intensive, an 
AFFO with a nonzero gain matrix may become 
unstable. An MRAS for estimating the speed and stator 
resistance is developed using Popov’s stability criterion 
[14], [15]. Recently, two extended Kalman filter (EKF) 
algorithms for estimating stator and rotor resistances are 
utilized in a braided manner, thus achieving an accurate 
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estimation of a high number of parameters and states 
than would have been possible with a single EKF 
algorithm [16]. The second category of online stator 
resistance identification schemes depends on artificial 
intelligence techniques in the process of stator 
resistance adaptation. Artificial neural networks for 
estimating stator and rotor resistances are used for this 
purpose [17]. High-performance applications of 
sensorless systems require high accuracy of speed 
estimation over a wide speed range extending from very 
low and zero-speed operations to high speeds beyond 
the rating. Operation of field-oriented induction motors 
below the base speed is usually achieved with constant 
flux. Therefore, magnetizing inductance can be regarded 
as constant and equal to its rated value. In the field-
weakening region, the rotor flux reference has to be 
reduced below its rated value. Variation of the rotor flux 
reference implies variable level of saturation, and 
consequently, magnetizing inductance of the machine is 
varied [18], [19]. Accurate value of magnetizing 
inductance is of utmost importance for many reasons. 
The first one is the correct setting of the d-axis stator
current reference in a vector-controlled drive. The 
second one is its importance for accurate speed 
estimation in the field-weakening region, using 
machine-model-based approaches, of sensorless 
systems. The third reason is the dependency of rotor 
time constant identification schemes on magnetizing 
inductance, such as the method [22] utilizing reactive 
power. The accurate estimation of rotor time constant in 
the field-weakening region requires a correct value of 
the magnetizing inductance to be known.
Several research and industrial applications 
concentrated their efforts on providing simple and easy 
control algorithms to cope with the increasing 
complexity of the controlled processes/systems [1]. The 
design method for a controller should enable full 
flexibility in the modification of the control surface [2]. 
The systems involved in practice are, in general, 
complex and time variant, with delays and 
nonlinearities, and often with poorly defined dynamics. 
Consequently, conventional control methodologies 
based on linear system theory have to simplify/linearize 
the nonlinear systems before they can be used, but 
without any guarantee of providing good performance. 
To control nonlinear systems satisfactorily, nonlinear 
controllers are often developed. The main difficulty in 
designing nonlinear controllers is the lack of a general 
structure [3]. In addition, most linear and nonlinear 
control solutions developed during the last three 
decades have been based on precise mathematical 
models of the systems. Most of those systems are 
difficult/impossible to be described by conventional 
mathematical relations, hence, these model-based 

design approaches may not provide satisfactory 
solutions [4]. This motivates the interest in using FLC; 
FLCs are based on fuzzy logic theory [5] and employ a 
mode of approximate reasoning that resembles the 
decision making process of humans. The behavior of a 
FLC is easily understood by a human expert, as 
knowledge is expressed by means of intuitive, linguistic 
rules.

The block diagram of the generalized indistinct 
controller consists of four elements [13]:

1) 1 Fuzzification block, transforming input physical 
values yi into corresponding linguistic variables μ ( 
yi); 

2) Knowledge base, containing rules table for logic 
output block; 

3) Logic output block, transforming input linguistic 
variables into output with some belonging functions 
Con; 

4) Defuzzification block, transforming output 
linguistic variables into physical control influence. 

Shows the structure of P-type a fuzzy 
controller. In this case, the error of regulation ε may be 
taken as the input information. The output information 
is the signal of the relative duration of conducting state 
of the switch Con = tk/T - (k-1). The structure of PI 
Fuzzy controller is shown in. The input variables of this 
controller are, accordingly, the error of regulation ε and 
its derivative .ε. The output is the gain.

General structure of a fuzzy logic controller

II. SYSTEM IMPLEMENTATION

The basic configuration of the experimental system is 
shown in Fig. 4. It consists of an induction motor 
interfaced with a digital control board DS1102 based on 
a Texas Instruments TMS320C31 DSP for speed 
estimation. The induction motor is coupled with a dc 
generator for mechanical loading. The rating and 
parameters of the induction motor are given in the 
Appendix. Stator terminal voltages and currents are 
measured and filtered using analog circuitry. Hall-effect 
sensors are used for this purpose. The measured voltage 
and current signals are acquired by the A/D input ports 
of the DSP control board. This board is hosted by a 
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personal computer on which mathematical algorithms 
are programmed and downloaded to the board for real-
time speed estimation. A direct speed measurement is 
also carried out for comparison with the estimated 
speed. The output switching commands of the DSP 
control board are obtained via its digital ports and 
interfaced with the inverter through opto isolated gate 
drive circuits. 

IFO controller with compensation of flux saturation. 

Actual and estimated speeds, and speed estimation error 
at speed command of 2 rad/s. Stator resistance 
adaptation is activated at t = 1s. (a) Ŕso = 1.5 Rs. (b) Ŕso

= 1.3 Rs.

Block diagram of PI-type fuzzy controller 

Comparison for quality parameters of PI and Fuzzy 
controllers: The following values were taken for 
comparison: Uref = 3; β =0,04, kUin: 0,25; 0,5; 1,0; 2,0; 
4,0; 0: 0,1; 0,2; 0,3. The Simulation of the structure of 
fig. 4 allows defining the value of the static regulation 
error > and the values of overcorrection 8. For that, it 
was necessary to vary the parameters of an input voltage 

in the above-mentioned range and the factor of error 
scaling kUin. The results given in tables 3, 4 are obtained 
at a value of loading resistance R0 = 300 Ohm. It is 
found that with the increasing of error scaling factor 
kUin, the static error is decreased and the overregulation 
is increased. The value of static error was defined for 
the input voltage Uin = 60 V only, quasiperiodic 
oscillations were observed for other values of the input
voltage. The estimation of the specified parameters of 
the controller structure of Fig. 7 isn’t given, as it is 
practically static (>≈ 0,1 %) with a periodic transient.

Time-domain transient of the input current

A sensorless indirect field-oriented (IFO) controlled 
induction motor drive, shown in Fig. 5, is used, where 
the actual speed feedback signal is replaced by the 
estimated one. The sensitivity to stator resistance 
mismatch is shown in Fig. 6 for +20% Rs error at high 
and low speeds. These results show that the speed 
estimation error at high-speed operation (150 rad/s) is 
1.9 rad/s (1.26%), and that at low-speed operation (3 
rad/s) is 0.32 rad/s (10.7%). Large error at low speeds 
may cause instability. In order to avoid this, the online 
stator resistance adaptation scheme (22) has been 
applied. The initial detuning in the stator resistance 
takes values of −10% and −50%, as shown in Fig. 7(a). 
In both cases, the stator resistance adaptation was 
activated at t = 0. It is clear that the stator resistance 
estimator quickly removes the initial stator resistance 
error and consequently eliminates the large speed 
estimation error. A considerable reduction of the speed 
error is observed with stator resistance adaptation due to 
−50% initial Rs mismatch in the observer, as shown in 
Fig. 7(b).
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Since motor heating usually causes a 
considerable variation in the winding resistance, so 
there is often a mismatch between the actual stator 
resistance and its corresponding set value within the 
model used for speed estimation. For this purpose, the 
proposed SMO with a stator resistance identification 
scheme is first tested under different values of stator 
resistance to represent this parameter mismatch. Fig. 13 
shows the estimated speed at 10 rad/s at +50% stator 
resistance mismatch with activated stator resistance 
adaptation. It is observed that the estimated speed 
preserves its value unchanged under this parameter 
mismatch. This test proves that the proposed SMO with 
online stator resistance tuning is dependable and 
accurately gives the same behavior as the actual speed 
under stator resistance mismatch.

Actual and estimated speeds during speed reversal at 
100 rad/s (a) without stator resistance adaptation and (b) 
with stator resistance adaptation.

IV CONCLUSION

In this paper, parallel speed and stator resistance 
identification schemes of sensorless induction motor 
drives have been introduced to overcome the problem of 
resistance variation. Estimation algorithms have been 
obtained based on a sliding mode current observer 
combined with Popov’s hyper stability theory. It has 
been found that activation of the stator resistance 
adaptation mechanism quickly compensates the initial 
error in the estimated stator resistance value and 
therefore eliminates the initial speed estimation error. 
As a consequence, the actual and estimated speeds 
become in very good agreement. Lowand zero-speed 
sensorless operations have also been investigated by the 
proposed SMO combined with the online stator 
resistance adaptation scheme.
Fuzzy logic provides a certain level of artificial 
intelligence to the conventional controllers, leading to 
the effective fuzzy controllers. Process loops that can 
benefit from a non-linear control response are excellent 
candidates for fuzzy control. Since fuzzy logic provides 
fast response times with virtually no overshoot. Loops 

with noisy process signals have better stability and 
tighter control when fuzzy logic control is applied. 

P Fuzzy controller has smaller sensitivity to the 
change in the input voltage, however, more sensitivity is 
observed to load changes. PI- Fuzzy controller has less 
sensitivity to load changes, where, higher sensitivity to 
the change of the input voltage is observed. 

Analysis of transient and static error of 
regulation has shown advantage of an indistinct PI-
controller for the output voltage over the P-type fuzzy 
controller. 

P Fuzzy controller has faster transient as 
compared to PI controller, while, transient for PI Fuzzy 
controller is almost periodic.

IV APPENDIX 

B. Induction Motor Parameters
Table I

INDUCTION MOTOR PARAMETERS
Rated power (w) 250 Rs (p.u) 0.0658
Rated voltage (volt) 250 Rs (p.u) 0.0658
Rated current (Amp) 250 Rs (p.u) 0.0658
Rated frequency (Hz) 250 Rs (p.u) 0.0658
Number of poles 250 Rs (p.u) 0.0658
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